X-ray powder diffraction and IR study of NaMg(H2O)2[BP2O8]*·***H2O and NH4Mg(H2O)2[BP2O8]***·***H2O**

A. BAYKAL, M. KIZILYALLI[∗]

Department of Chemistry, Middle East Technical University, 06531 Ankara, Turkey E-mail: meralk@metu.edu.tr

R. KNIEP

Technische Hochshule Darmstadt, Eduard-Zintl Institute, Anorganische Chemie II, Hochschule str. 10, D64289, Darmstadt, Germany

 $NaMg(H₂O)₂[BP₂O₈]+H₂O$ was prepared by hydrothermal synthesis and was characterized by X-ray powder difraction and IR method. The title compound was synthesized from $MgCl_2·6H_2O$, NaBO₃·4H₂O, and $(NH_4)_2HPO_4$ with variable molar ratios using hydrothermal method by heating at 165 ℃ for 3 days. The X-ray powder diffraction data was indexed in hexagonal system, the unit cell parameters were found to be as $a = 9.428$, $c = 15.82$ Å, $Z = 4$ and the space group is P6₁22. It is isostructural with $\mathsf{M}^|\mathsf{M}^{\mathsf{II}}(\mathsf{H}_2\mathsf{O})[\mathsf{BP}_2\mathsf{O}_8]$ type compounds where $M^{\parallel} =$ Na, K; M^{||} = Mg, Mn, Fe, Co, Ni and Zn. In addition $NH_4Mg(H_2O)_2[BP_2O_8]H_2O$ was also synthesized the first time in this research. Its unit cell parameters and hkl values were in good agreement with the sodium magnesium compound. The unit cell parameters are $a = 9.529$, $c = 15.736$ Å. The indexed X-ray powder diffraction data of both compounds which were not reported in the literature is presented in this work. The IR data of NaMg(H_2O)₂[BP₂O₈]·H₂O is also reported. \odot 2000 Kluwer Academic Publishers

1. Introduction

Borophosphates are intermediate compounds of the systems $M_xO_y - B_2O_3 - P_2O_5 - (H_2O)$ which contain complex anionic structures built of $BO₄$, $BO₃$ and $PO₄$ groups. A first approach to the development of a structural chemistry of borophosphates is based on the linking principles of the primary building units following the general line of silicate crystal chemistry [1–3].

Most of the compounds already known contain anionic partial structures in which phosphorus and boron are tetrahedrally surrounded by oxygen. But there are a lot of examples in which boron also shows trigonal - planar coordination. The borophosphate, $CoB_2P_3O_{12}(OH) \cdot C_2H_{10}N_2$, was described as an open framework structure formed from corner-sharing BO4 and PO_4 tetrahedra as well as CoO_6 octahedra [4]. In the structure of $Pb_3[BP_3O_{12}]$, boron and phosphorus are also tetrahedrally coordinated by oxygen and the polyhedra form one-dimensional infinite helices that contain two additional PO_4 groups connected to the BO_4 unit [5]. The crystal structure of $\text{Na}_5[\text{B}_2\text{P}_3\text{O}_{13}]$ contains $BO₄$ and $PO₄$ tetrahedra which share common vertices to form one dimensional infinite chains of $[B_2P_3O_{13}]$ [6, 7]. On the other hand, $Co₅BP₃O₁₃$ contains planar BO₃ groups that are linked to PO4 tetrahedra to form dimeric $[{\rm BPO}_6]^{4-}$ units [8]. The structure of α - Zn₃(BO₃)(PO₄) contains isolated trigonally planar $BO₃$ and tetrahedral

PO4 units which are not joined together [9]. Shi *et al* [10]. also stated that the crystal structure of isotypic rare earth borophosphate compounds, $Ln_7O_6(BO_3)(PO_4)_2$, contains isolated BO_3 triangles and PO_4 tetrahedras as in the case of α -Mg₃[BPO₇] [3, 11].

Although the definite number of crystal structures of borophosphates known up to now is rather small, a first approach to a structural chemistry of borophosphates is proposed by Kniep *et al* [12]. in which crystal structure of borophosphates are first divided into anhydrous and hydrated phases. According to this classification and the molar ratio of B : P; trigonal or tetrahedral coordination of B and ring structures were observed.

Molecular sieve compounds are a class of crystalline solids which because of their porous nature have wide uses for catalytic and adsorption purposes [13]. Since $BPO₄$ itself is an effective catalyst in a variety of dehydration, hydration, alkylation, oligomerization and rearrangement reactions, incorporation of borophosphate groups into microporous metal-borophosphates offers the potential for enhanced catalytic efficiency, as well as hydrolytic stability and the additional catalytic activitiy of the metal centers of the framework [14–16].

In this work hydrothermal preparation of NaMg $(H_2O)_2[BP_2O_8]H_2O$ and $NH_4Mg(H_2O)_2[BP_2O_8]$ $H₂O$ were accomplished using different reactions with different molar ratios of the reactants. The powder

[∗] Author to whom all correspondence should be addressed.

products were analyzed by X-ray powder diffraction and IR methods.

2. Experimental

2.1. Substances

 $MgCl₂·6H₂O$, NaBO₃·4H₂O, and $(NH₄)₂HPO₄$ (from Merck)

2.2. Instrumentation

X-ray powder diffraction patterns (XRD) taken by using Philips diffractometer with PW 1050/25 goniometer and Co (K α 30–40 kV, 10–20 mA, $\lambda = 1.79021$ Å) radiation and Huber Diffractometer with Cu ($K\alpha_1$ 30– 40 kV, 10–20 mA, $\lambda = 1.54051$ Å).

Nicolet 510 FT-IR Infrared Spectrometer was used in the region 400–4000 cm^{-1} . Spectra of solid samples were obtained from KBr pellets with 100 : 30 (wt/wt) KBr to product ratio.

The heating of teflon coated autoclave was done with Electro-mag oven with the heating range of $50-300\degree$ C.

Crystals were photographed with Jeol Scanning Electron Microscope (SEM) 6400 (JSN-6400) and the quantitative analysis of Mg, and Na have been done with Energy Dispersive X-ray analyzer (EDX) (20 kV).

Inductively Coupled Plasma (ICP Leeman Lab.Inc., DRE Direct Reading Echelle) was used for the analysis of Mg, Na, P and B.

2.3. Procedure

The hydrothermal synthesis was started from mixtures (totally 8 g) of $MgCl_2·6H_2O$, $NaBO_3·4H_2O$, and (NH_4) ₂ HPO₄ in various molar ratios (Table I). Required amount of $H₂O$ and concentrated $HNO₃$ (given in Table I) was added to dissolve this solid mixture at 90° C, then the total volume was reduced to 10 ml by evaporation of water. The highly viscous solution ($pH < 1$) was filled into Teflon coated autoclave (degree of filling 60%) and treated at 160° C for three days. In the second set of experiments, instead of $NaBO₃·4H₂O$, H_3BO_3 was used in the mixture for hydrothermal synthesis in different ratios, so that sodium cation was excluded.

3. Results and discussion

As it is seen from the Table I, NaMg $(H_2O)_2[BP_2O_8]\cdot H_2O$ was obtained almost in all experiments. The formation of this compound does not depend on the composition of the reactants.

The X-ray powder patterns of product washed with $H₂O$ and washed with concentrated $HNO₃$ was the same. It was not soluble in $HNO₃$. For comparison purposes the X-ray powder patterns of original product, washed with H_2O and washed with HNO_3 are given in Fig. 1a–c respectively.

Single crystals of $NaMg(H_2O)_2[BP_2O_8]\cdot H_2O$ was synthesized by Kniep [17] *et al*. in 1997 under mild hydrothermal conditions. They carried out the experiment at 150° C in $25-30\%$ aqueous HCl solutions by mixing $Na₂HPO₄$, $Na₂B₄O₇ \cdot 10H₂O$ and $MgHPO₄$ within approximately 2 weeks and obtained single crystals which have a size of up to 0.5 mm. The crystal structure of $NaMg(H_2O)_2[BP_2O_8]\cdot H_2O$ was solved and found to be hexagonal. They reported that $M^I M^I (H_2 O)_2 [BP_2 O_8] H_2 O$, ($M^I = Na$, K; $M^I = Mg$, Mn, Fe, Co, Ni, Zn) compounds are isotypic.

The product obtained in this experiment in the powder form was indexed in the hexagonal system with the unit cell parameters of $a = 9.428$, $c = 15.82$ Å, $Z = 4$, space group $P6₁22$ (No:178) which are in agreement with the single crystal data. The indexing of the X-ray powder diffraction pattern of $NaMg(H_2O)_2[BP_2O_8]\cdot H_2O$ is given in Table II.

In the second set of experiments it was found that when the ratio of the initial reactants are $3:1.5:5.5$, a new product, $NH_4Mg(H_2O)_2[BP_2O_8]H_2O$, was formed which have the same *d*-spacings with the sodium compound and seems to be isostructural. The IR data showed the presence of $NH₄$ ion. This compound was also indexed in hexagonal system and the unit cell parameters are $a = 9.529$, $c = 15.736$ Å. The X-ray powder data is included in Table II for comparison

TABLE I Hydrothermal reactions of $MgCl_2·6H_2O + NaBO_3·4H_2O + (NH_4)_2HPO_4$

Exp.No	Compositions $MgCl2·6H2O·NaBO3·4H2O$ $(NH_4)_2HPO_4$	Solvent (ml) H ₂ O/HNO ₃	Duration (Day)	Temp. $({}^{\circ}{\bf C})$	Phases Present
B1	3.3:3.3:3.3	20/2	3	165	$NaMg(H_2O)_2[BP_2O_8]H_2O$
B1.1	B1 washed with H_2O				$NaMg(H2O)2[BP2O8]\cdot H2O$
B1.2	B1 washed with conc.HNO ₃				$NaMg(H_2O)_2[BP_2O_8]H_2O$
B1.1F	B1 heated		6h	500	Amorphous
B4	3.5:1.5:5	20/3	3	165	$NaMg(H_2O)_2[BP_2O_8]H_2O$
B4.1	B4 washed with H_2O				$NaMg(H2O)2[BP2O8]\cdot H2O$
B4.2	B4 Washed with conc. $HNO3$				$NaMg(H2O)2[BP2O8]\cdot H2O$
B _{4F}	B4 heated		6h	500	Amorphous
B4YY	$3.5:1.5:5$ (B4 repeated)	20/3	3	165	$NaMg(H_2O)_2[BP_2O_8]H_2O$
B4YY	B4YY heated at 350 °C		6h	350	Amorphous
H_2O					
B6	1:7.5:1.5	20/6	3	165	$NaMg(H_2O)_2[BP_2O_8]H_2O$
B6.1	B6 Washed with Hot Water				$NaMg(H2O)2[BP2O8]+H2O$
B6F	B6 heated		6h	500	Amorphous
B9	2:2.5:5.5	15/3	3	165	$NaMg(H2O)2[BP2O8]\cdot H2O$
B9.1	B9 Washed with Hot Water				$NaMg(H2O)2[BP2O8]\cdot H2O$
B9.2	B9 Washed with conc. $HNO3$				$NaMg(H2O)2[BP2O8]\cdot H2O$
B9F	B9 heated		6h	500	Amorphous

purposes [11] and its X-ray powder diffraction pattern is given in Fig. 1d. The full characterization of this compound left for future investigation.

ipate in bridging functions with $PO₄$ tetrahedra which is shown in Fig. 2.

3.1. Crystal structure

According to the crystal model done by Kniep *et al.* [17], the condensation of PO₄ and BO₄ tetrahedra through common vertices leads to tetrahedral ribbons $1/\propto$ [BP₂O₈]³⁻, which are arranged around 6₁ screw axes to form helices. The spiral ribbons are built from four rings of tetrahedra in which the $BO₄$ and $PO₄$ groups alternate. Each $BO₄$ tetrahedron also belongs to the adjacent four-ring of tetrahedra along the ribbon, in such a way that all vertices of the $BO₄$ groups partic-

3.2. IR study

In the IR spectrum of the product, two water bands occurring at 3354 and 3558 cm⁻¹ are due to water molecules occupying different positions [18]. The band at 3558 cm−¹ is due to hydrogen bonding between the hydrated molecules and other one at 3354 cm−¹ shows the bond between anion and coordinated water (Fig. 3a). The absence of the peak at 1440 cm^{-1} proves the absence $BO₃$ functional group in the structure. The absence of band for P-O-P (at around 740 cm^{-1}) satisfies postulate done by Kniep *et al* [12]. According to

Figure 1 (a) The X-ray powder pattern of $\text{NaMg}(H_2O)_2[\text{BP}_2O_8]\cdot\text{H}_2O$ (original product) (b) The X-ray powder pattern of the product washed with H2O (c) The X-ray powder pattern of the product washed with HNO₃ (d) The X-ray powder pattern of $NH_4Mg(H_2O)_2[BP_2O_8]\cdot H_2O$ (original product).

these supplementary principles, in borophosphate compounds P-O-P linking is not observed. The stretching modes of a free PO_4^{3-} anion with T_d symmetry has four internal modes of vibrations [19–22], $v_3(PO_4) = 1107$, 1024 cm⁻¹, $v_1(PO_4) = 954$, $v_4(PO_4) = 576$, and $v_2 =$ 482 cm^{-1} are also present in the IR spectra of product. The IR Frequencies of $NaMg(H_2O)_2[BP_2O_8]\cdot H_2O$ and $NH_4Mg(H_2O)_2[BP_2O_8]\cdot H_2O$ were given in Table III. In the IR spectra of $NH_4Mg(H_2O)_2[BP_2O_8]\cdot H_2O$, the strong band at 1447 cm^{-1} is due to N-H stretching vibration (Fig. 3b).

The thermal dehydration of this compound is a two step process. The dehydration at lower

TABLE III The IR Frequencies of $NaMg(H_2O)_2[BP_2O_8]H_2O$ and $NH_4Mg(H_2O)_2[BP_2O_8]H_2O$

Frequency $(cm-1)$	Assignments			
3558	Hydrogen bond between the water molecules			
3354	Hydrogen bond between borate anion and coordinated water			
1202, 1159	$v_{P=0}$			
1103, 1024	$\nu_3(BO_4), \nu_3(PO_4)$			
959	$v_1(PO_4)$			
882	$v_1(BO_4)$			
850	v_{as} B-O-P			
681	vs B-O-P			
650	δ BOP			
576	$\nu_4(BO_4), \nu_4(PO_4)$			
482	$v_2(PO_4)$			

Figure 2 Tetrahedral helices $1/\infty$ [BP₂O₈³⁻] in the crystal structure of $M^{I}M^{II}$ (H₂O)₂[BP₂O₈]·H₂O [17].

Figure 3 (a) The IR spectra of $NaMg(H_2O)_2[BP_2O_8] \cdot H_2O$ (b) The IR spectra of $NH_4Mg(H_2O)_2[BP_2O_8] \cdot H_2O$.

 $\frac{F}{4}$ 10Pm
,700 $\frac{1}{3}$ m m ø E **20KU** MET $X2,$ в $\overline{(b)}$

Figure 4 (a, b) The SEM photographs of $NaMg(H_2O)_2[BP_2O_8]\cdot H_2O$.

temperature (around 150° C) converts the formula into $NaMg(H_2O)[BP_2O_8]$ with the release of 2 moles of H2O. According to Kniep *et al.* [17], the water of crystallization (spiral structure within the channels of the M¹-borophosphate double helices) and one mole of coordination water (at the M^{ll} centers) are released in a collective process. The M^{ll} centers are then only pentacoordinate. The crystalline dehydration products $M^1M^1(H_2O)[BP_2O_8]$ can be described as microporous borophosphates with channel structures. At higher temperatures (at 500° C), release of the last mole of coordination water leads to X-ray amorphous product. Bands due to both coordinated and hydrated water disappeared and there was a minor change in the structure due to rupture of hydrogen bonds. The interpretation of the IR spectra revealed some broad features between $1200-650$ cm⁻¹ due to overlapping of P-O and B-O vibrational interactions so characteristic assignments may not very well established as stated by Tarte *et al.* [23]. Only tentative assignments can be proposed for the lower frequency bands in the 680–480 cm⁻¹ region. These may be assigned to chain vibrations which have a mixed stretching -bending character [24].

3.3. Analysis

The ICP analysis showed that washed product contains 410 ppm (3.72% wt/wt) B, 843 ppm (7.74% wt/wt) Mg and 803.5 ppm (7.4% wt/wt) Na. In addition EDX analysis showed that weight percent of Mg and Na are same. Theoretically, $NaMg(H_2O)_2[BP_2O_8]\cdot H_2O$ contains 3.64% (wt/wt) B, 7.61% (wt/wt) Na and 7.94% (wt/wt) Mg. This shows the ratio of Na : Mg : B is around 1 : 1 : 1.

The SEM photographs of the product are given in Fig. 4a and b which show the hexagonal structure clearly as a single crystals and bulk of single crystals.

4. Conclusion

In this study, $NaMg(H_2O)_2[BP_2O_8]H_2O$ and $NH_4Mg(H_2O)_2[BP_2O_8]\cdot H_2O$ were obtained and their X-ray powder and indexing data and IR analysis was presented the first time in this reseach. It was also shown that the obtained product is insoluble in H_2O and conc.HNO₃.

Acknowledgement

Authors would like to thank to TÜBITAK Münir Birsel Foundation of Turkey for a scholarship and Anorganische Chemie II, Eduard Zintl Institute Darmstadt, Germany for providing research facilities. METU AFP No:98-06-02-00-06 and Volkswagen Foundation for financing X-ray powder diffractometer would be greatly appreciated.

References

- 1. S. OLIVER, A. KUPERMAN and G. A. OZIN, *Angew. Chem.* **110** (1998) 48.
- 2. G. GÖZEL, Ph.D. Thesis, METU, Ankara, 1993.
- 3. G. GÖZEL, A. BAYKAL, M. KİXZİLYALLİ and R. KNIEP , *J. Eur. Cer. Soc.* **18** (1998) 2241.
- 4. ^S . C. SEVOV, *Angew. Chem. Int. Ed. Engl.* **35**(22) (1996) 2630.
- 5. C. H. PARK and K. BLUHM, Zeitschrift für Naturforschung **50b** (1995) 1617.
- 6. C. HAUF , T. FRIEDRICH and R. KNIEP , *Z. Kristallogr.* **210** (1995) 446.
- 7. C. HAUF, A. YİLMAZ, M. KİZİLYALLİ and R. KNIEP, J. *Solid State Chem.* **140** (1998) 154.
- 8. P. B. BONTCHEV and S. C. SEVOV, *Inorganic Chemistry* **35** (1996) 6910.
- 9. K. BLUHM and C. H. PARK, *Zeitschrift für Naturforschung* **52b** (1997) 102.
- 10. Y. SHI, J. LIANG, H. ZHANG, J. YANG, W. ZHUANG and G. RAO, *Journal of Solid State Chemistry* **129** (1997) 45.
- 11. A. BAYKAL, Ph.Thesis, Chemistry Department, Middle East Technical University, Ankara, Turkey, May, 1999.
- 12. R. KNIEP , H. ENGELHARDT and C. HAUF , *Chem. Mat.* **10** (1998) 2930.
- 13. W. H. FLANKE and T. E. WHYTE, "Perspectives in Molecular Sieve Science" (American. Chemical Society., Washington, 1988) p. 10.
- 14. ^S . ROSEMARIE, "Handbook of Molecular Sieves" (Van Nostrand Reinhold, New York, 1992) p. 25
- 15. J. B. MOFFAT and A. SCHIDTMEYER, *Appl. Catal.* **28** (1986) 161.
- 16. C. J. WARREN, C. R. HAUSHALTER, D. J. ROSE and J. ZUBIETA, *Chem. Mater.* **9** (1997) 2694.
- 17. R. KNIEP, H. G. WILL, I. BOY and C. RÖHR, *Angew. Chem. Int. Ed. Engl.* **36**(9) (1997) 1013.
- 18. D. PHILIP, G. ARULDHAS, X. MATHEW, V. U. NAYAR, N. BOUDJADA and B. LAMBERTANDRON, *Journal of Raman Spectroscopy* **22**(1) (1991) 45.
- 19. W. E. KLEE and G. ENGEL, *J. Inorg. Nucl. Chem.* **32** (1970) 1837.
- 20. K. NAKAMOTO, Infrared Spectra of Inorganic and Coordination Compounds (Plenum Press, New York, 1971) p. 45
- 21. ^S . D. ROSS , Inorganic Infrared and Raman Spectra (McGraw-Hill Press, London, 1972) p. 131.
- 22. A. BAYKAL and M. KİZİLYALLİ, *Turkish Journal of Chemistry* **21**(4) (1997) 394.
- 23. P. TARTE, A. RULMONT, M. LIEGEOIS-DUYCKAERTS , R. CAHAY and J. M. WINAND, *Solid State Ionics* **42** (1990) 177.
- 24. A. RULMONT and P. TARTE, *J. Solid State Chem.* **75** (1988) 244.

Received 13 July 1999 and accepted 2 March 2000