X-ray powder diffraction and IR study of NaMg(H₂O)₂[BP₂O₈] \cdot H₂O and NH₄Mg(H₂O)₂[BP₂O₈] \cdot H₂O

A. BAYKAL, M. KIZILYALLI*

Department of Chemistry, Middle East Technical University, 06531 Ankara, Turkey E-mail: meralk@metu.edu.tr

R. KNIEP

Technische Hochshule Darmstadt, Eduard-Zintl Institute, Anorganische Chemie II, Hochschule str. 10, D64289, Darmstadt, Germany

NaMg(H₂O)₂[BP₂O₈]·H₂O was prepared by hydrothermal synthesis and was characterized by X-ray powder diffraction and IR method. The title compound was synthesized from MgCl₂·6H₂O, NaBO₃·4H₂O, and (NH₄)₂HPO₄ with variable molar ratios using hydrothermal method by heating at 165 °C for 3 days. The X-ray powder diffraction data was indexed in hexagonal system, the unit cell parameters were found to be as a = 9.428, c = 15.82 Å, Z = 4and the space group is P6₁22. It is isostructural with M^IM^{II}(H₂O)[BP₂O₈] type compounds where M^I = Na, K; M^{II} = Mg, Mn, Fe, Co, Ni and Zn. In addition NH₄Mg(H₂O)₂[BP₂O₈]·H₂O was also synthesized the first time in this research. Its unit cell parameters and hkl values were in good agreement with the sodium magnesium compound. The unit cell parameters are a = 9.529, c = 15.736 Å. The indexed X-ray powder diffraction data of both compounds which were not reported in the literature is presented in this work. The IR data of NaMg(H₂O)₂[BP₂O₈]·H₂O is also reported. © 2000 Kluwer Academic Publishers

1. Introduction

Borophosphates are intermediate compounds of the systems $M_x O_y$ -B₂O₃-P₂O₅-(H₂O) which contain complex anionic structures built of BO₄, BO₃ and PO₄ groups. A first approach to the development of a structural chemistry of borophosphates is based on the linking principles of the primary building units following the general line of silicate crystal chemistry [1–3].

Most of the compounds already known contain anionic partial structures in which phosphorus and boron are tetrahedrally surrounded by oxygen. But there are a lot of examples in which boron also shows trigonal - planar coordination. The borophosphate, $CoB_2P_3O_{12}(OH) \cdot C_2H_{10}N_2$, was described as an open framework structure formed from corner-sharing BO₄ and PO_4 tetrahedra as well as CoO_6 octahedra [4]. In the structure of $Pb_3[BP_3O_{12}]$, boron and phosphorus are also tetrahedrally coordinated by oxygen and the polyhedra form one-dimensional infinite helices that contain two additional PO₄ groups connected to the BO₄ unit [5]. The crystal structure of Na₅[B₂P₃O₁₃] contains BO₄ and PO₄ tetrahedra which share common vertices to form one dimensional infinite chains of $[B_2P_3O_{13}]$ [6, 7]. On the other hand, $Co_5BP_3O_{13}$ contains planar BO₃ groups that are linked to PO₄ tetrahedra to form dimeric $[BPO_6]^{4-}$ units [8]. The structure of α - Zn₃(BO₃)(PO₄) contains isolated trigonally planar BO₃ and tetrahedral

PO₄ units which are not joined together [9]. Shi *et al* [10]. also stated that the crystal structure of isotypic rare earth borophosphate compounds, $Ln_7O_6(BO_3)(PO_4)_2$, contains isolated BO₃ triangles and PO₄ tetrahedras as in the case of α -Mg₃[BPO₇] [3, 11].

Although the definite number of crystal structures of borophosphates known up to now is rather small, a first approach to a structural chemistry of borophosphates is proposed by Kniep *et al* [12]. in which crystal structure of borophosphates are first divided into anhydrous and hydrated phases. According to this classification and the molar ratio of B : P; trigonal or tetrahedral coordination of B and ring structures were observed.

Molecular sieve compounds are a class of crystalline solids which because of their porous nature have wide uses for catalytic and adsorption purposes [13]. Since BPO₄ itself is an effective catalyst in a variety of dehydration, hydration, alkylation, oligomerization and rearrangement reactions, incorporation of borophosphate groups into microporous metal-borophosphates offers the potential for enhanced catalytic efficiency, as well as hydrolytic stability and the additional catalytic activity of the metal centers of the framework [14–16].

In this work hydrothermal preparation of NaMg $(H_2O)_2[BP_2O_8] \cdot H_2O$ and $NH_4Mg(H_2O)_2[BP_2O_8] \cdot H_2O$ were accomplished using different reactions with different molar ratios of the reactants. The powder

^{*} Author to whom all correspondence should be addressed.

products were analyzed by X-ray powder diffraction and IR methods.

2. Experimental

2.1. Substances

 $MgCl_2{\cdot}6H_2O,\,NaBO_3{\cdot}4H_2O,\,and\,(NH_4)_2HPO_4$ (from Merck)

2.2. Instrumentation

X-ray powder diffraction patterns (XRD) taken by using Philips diffractometer with PW 1050/25 goniometer and Co (K α 30–40 kV, 10–20 mA, $\lambda = 1.79021$ Å) radiation and Huber Diffractometer with Cu (K α_1 30–40 kV, 10–20 mA, $\lambda = 1.54051$ Å).

Nicolet 510 FT-IR Infrared Spectrometer was used in the region 400–4000 cm⁻¹. Spectra of solid samples were obtained from KBr pellets with 100:30 (wt/wt) KBr to product ratio.

The heating of teflon coated autoclave was done with Electro-mag oven with the heating range of 50–300°C.

Crystals were photographed with Jeol Scanning Electron Microscope (SEM) 6400 (JSN-6400) and the quantitative analysis of Mg, and Na have been done with Energy Dispersive X-ray analyzer (EDX) (20 kV).

Inductively Coupled Plasma (ICP Leeman Lab.Inc., DRE Direct Reading Echelle) was used for the analysis of Mg, Na, P and B.

2.3. Procedure

The hydrothermal synthesis was started from mixtures (totally 8 g) of MgCl₂·6H₂O, NaBO₃·4H₂O, and (NH₄)₂HPO₄ in various molar ratios (Table I). Required amount of H₂O and concentrated HNO₃ (given in Table I) was added to dissolve this solid mixture at 90 °C, then the total volume was reduced to 10 ml by evaporation of water. The highly viscous solution (pH < 1) was filled into Teflon coated autoclave (degree of filling 60%) and treated at 160 °C for three days. In the second set of experiments, instead of NaBO₃·4H₂O, H₃BO₃ was used in the mixture for hydrothermal synthesis in different ratios, so that sodium cation was excluded.

3. Results and discussion

As it is seen from the Table I, NaMg $(H_2O)_2[BP_2O_8]\cdot H_2O$ was obtained almost in all experiments. The formation of this compound does not depend on the composition of the reactants.

The X-ray powder patterns of product washed with H_2O and washed with concentrated HNO₃ was the same. It was not soluble in HNO₃. For comparison purposes the X-ray powder patterns of original product, washed with H_2O and washed with HNO₃ are given in Fig. 1a–c respectively.

Single crystals of NaMg(H₂O)₂[BP₂O₈]·H₂O was synthesized by Kniep [17] *et al.* in 1997 under mild hydrothermal conditions. They carried out the experiment at 150 °C in 25–30% aqueous HCl solutions by mixing Na₂HPO₄, Na₂B₄O₇·10H₂O and MgHPO₄ within approximately 2 weeks and obtained single crystals which have a size of up to 0.5 mm. The crystal structure of NaMg(H₂O)₂[BP₂O₈]·H₂O was solved and found to be hexagonal. They reported that $M^{I}M^{II}(H_{2}O)_{2}[BP_{2}O_{8}]\cdotH_{2}O$, ($M^{I} = Na, K; M^{II} = Mg,$ Mn, Fe, Co, Ni, Zn) compounds are isotypic.

The product obtained in this experiment in the powder form was indexed in the hexagonal system with the unit cell parameters of a = 9.428, c = 15.82 Å, Z = 4, space group P6₁22 (No:178) which are in agreement with the single crystal data. The indexing of the X-ray powder diffraction pattern of NaMg(H₂O)₂[BP₂O₈]·H₂O is given in Table II.

In the second set of experiments it was found that when the ratio of the initial reactants are 3:1.5:5.5, a new product, NH₄Mg(H₂O)₂[BP₂O₈]·H₂O, was formed which have the same *d*-spacings with the sodium compound and seems to be isostructural. The IR data showed the presence of NH₄ ion. This compound was also indexed in hexagonal system and the unit cell parameters are a = 9.529, c = 15.736 Å. The X-ray powder data is included in Table II for comparison

TABLE I Hydrothermal reactions of $MgCl_2 \cdot 6H_2O + NaBO_3 \cdot 4H_2O + (NH_4)_2HPO_4$

Exp.No	Compositions MgCl ₂ ·6H ₂ O·NaBO ₃ ·4H ₂ O (NH ₄) ₂ HPO ₄	Solvent (ml) H ₂ O/HNO ₃	Duration (Day)	Temp. (°C)	Phases Present
B1	3.3:3.3:3.3	20 / 2	3	165	NaMg(H ₂ O) ₂ [BP ₂ O ₈]·H ₂ O
B1.1	B1 washed with H ₂ O				NaMg(H ₂ O) ₂ [BP ₂ O ₈]·H ₂ O
B1.2	B1 washed with conc.HNO ₃				NaMg(H ₂ O) ₂ [BP ₂ O ₈]·H ₂ O
B1.1F	B1 heated		6h	500	Amorphous
B4	3.5:1.5:5	20 / 3	3	165	NaMg(H ₂ O) ₂ [BP ₂ O ₈]·H ₂ O
B4.1	B4 washed with H ₂ O				NaMg(H ₂ O) ₂ [BP ₂ O ₈]·H ₂ O
B4.2	B4 Washed with conc.HNO ₃				NaMg(H ₂ O) ₂ [BP ₂ O ₈]·H ₂ O
B4F	B4 heated		6h	500	Amorphous
B4YY	3.5:1.5:5 (B4 repeated)	20 / 3	3	165	NaMg(H ₂ O) ₂ [BP ₂ O ₈]·H ₂ O
B4YY	B4YY heated at 350 °C		6h	350	Amorphous
H ₂ O					
B6	1:7.5:1.5	20 / 6	3	165	NaMg(H ₂ O) ₂ [BP ₂ O ₈]·H ₂ O
B6.1	B6 Washed with Hot Water				NaMg(H ₂ O) ₂ [BP ₂ O ₈]·H ₂ O
B6F	B6 heated		6h	500	Amorphous
B9	2:2.5:5.5	15/3	3	165	NaMg(H ₂ O) ₂ [BP ₂ O ₈]·H ₂ O
B9.1	B9 Washed with Hot Water				NaMg(H ₂ O) ₂ [BP ₂ O ₈]·H ₂ O
B9.2	B9 Washed with conc.HNO ₃				NaMg(H ₂ O) ₂ [BP ₂ O ₈]·H ₂ O
B9F	B9 heated		6h	500	Amorphous

ΓABLE II The X-ray powder diffraction	n data of NaMg(H ₂ O) ₂ [BP ₂ O ₈]·H ₂ O	O and NH ₄ Mg(H ₂ O) ₂ [BP ₂ O ₈]·H ₂ O
---------------------------------------	--	--

$NaMg(H_2O)_2[BP_2O_8]\cdot H_2O$				$NH_4Mg(H_2O)_2[BP_2O_8]\cdot H_2O$		
Int.	d-spacing Å				<i>d-spacing</i> Å	
	Obs.	Calc.	h k l	Int.	Obs.	Calc.
6	8.1700	8.1649	1 0 0	6	8.2538	8.2524
100	7.2727	7.2555	1 0 1	100	7.3086	7.3083
20	5.6831	5.6812	1 0 2	25	5.6830	5.6945
25	4.7213	4.7140	1 1 0	20	4.7640	4.7675
18	4.5142	4.5177	1 1 1	9	4.5601	4.5601
20	4.4360	4.4298	1 0 3	8	4.4272	4.4268
25	4.0809	4.0824	2 0 0	31	4.1259	4.1262
30	3.9519	3.9529	2 0 1	23	3.9922	3.9912
20	3.6334	3.6278	2 0 2	22	3.6539	3.6542
5	3.5561	3.5594	1 0 4	5	3.5533	3.5511
85	3.2247	3.2281	2 0 3	76	3.2431	3.2430
60	3.0827	3.0860	2 1 0	41	3.1186	3.1191
55	3.0275	3.0289	2 1 1	49	3.0579	3.0596
45	2.9493	2.9502	1 0 5	43	2.9398	2.9406
25	2.8725	2.8750	2 1 2	25	2.8988	2.8996
10	2.8404	2.8406	2 0 4	14	2.8466	2.8473
55	2.7190	2.7216	3 0 0	35	2.7503	2.7508
8	2.6651	2.6635	2 1 3	5	2.6806	2.6809
43	2.6362	2.6367	0 0 6	52	2.6227	2.6227
12	2.5715	2.5736	3 0 2	12	2.5961	2.5967
10	2.4169	2.4185	3 0 3	12	2.4352	2.4361
5	2.3019	2.3012	1 1 6	5	2.2963	2.2976
8	2.2642	2.2589	2 2 2	12	2.2795	2.2800
20	2.1802	2.1771	3 1 2	8	2.1980	2.1977
12	2.1499	2.1518	2 2 3	11	2.1692	2.1690
30	2.0378	2.0379	3 1 3	30	2.0378	2.0379
30	2.0378	2.0379	1 1 7	28	2.0335	2.0331
20	2.0231	2.0244	4 0 1	-	-	-
10	1.9218	1.9219	1 0 8	8	1.9134	1.9134
13	1.8930	1.8937	306	-	-	-
10	1.8718	1.8732	3 2 0	5	1.8931	1.8932
10	1.8585	1.8602	3 2 1	11	1.8799	1.8797
12	1.8226	1.8227	3 2 2	8	1.8399	1.8407
-	-	-	4 0 4	13	1.8271	1.8271
6	1.7795	1.7797	2 0 8	7	1.7756	1.7756
10	1.7385	1.7387	307	8	1.7407	1.7407
10	1.7191	1.7179	3 1 6	5	1.7245	1.7245
17	1.6880	1.6880	4 1 3	18	1.7034	1.7032
5	1.6654	1.6650	2 1 8	5	1.6638	1.6638
10	1.6311	1.6313	227	13	1.6354	1.6350
14	1.6143	1.6145	209	11	1.6099	1.6099
5	1.5538	1.5531	1 0 10	5	1.5467	1.5457
6	1.5145	1.5148	407	8	1.5199	1.5200
20	1.4753	1.4751	2 0 10	5	1.4700	1.4703
7	1.4421	1.4422	327	7	1.4482	1.4481
5	1.4082	1.4078	2 1 10	7	1.4055	1.4049
8	1.3596	1.3599	3 2 8	14	1.3641	1.3640

purposes [11] and its X-ray powder diffraction pattern is given in Fig. 1d. The full characterization of this compound left for future investigation. ipate in bridging functions with PO_4 tetrahedra which is shown in Fig. 2.

3.1. Crystal structure

According to the crystal model done by Kniep *et al.* [17], the condensation of PO₄ and BO₄ tetrahedra through common vertices leads to tetrahedral ribbons $^{1/\alpha}[BP_2O_8]^{3-}$, which are arranged around 6_1 screw axes to form helices. The spiral ribbons are built from four rings of tetrahedra in which the BO₄ and PO₄ groups alternate. Each BO₄ tetrahedron also belongs to the adjacent four-ring of tetrahedra along the ribbon, in such a way that all vertices of the BO₄ groups partic-

3.2. IR study

In the IR spectrum of the product, two water bands occurring at 3354 and 3558 cm⁻¹ are due to water molecules occupying different positions [18]. The band at 3558 cm⁻¹ is due to hydrogen bonding between the hydrated molecules and other one at 3354 cm⁻¹ shows the bond between anion and coordinated water (Fig. 3a). The absence of the peak at 1440 cm⁻¹ proves the absence BO₃ functional group in the structure. The absence of band for P-O-P (at around 740 cm⁻¹) satisfies postulate done by Kniep *et al* [12]. According to

Figure 1 (a) The X-ray powder pattern of NaMg(H₂O)₂[BP₂O₈]·H₂O (original product) (b) The X-ray powder pattern of the product washed with H₂O (c) The X-ray powder pattern of the product washed with HNO₃ (d) The X-ray powder pattern of NH₄Mg(H₂O)₂[BP₂O₈]·H₂O (original product).

these supplementary principles, in borophosphate compounds P-O-P linking is not observed. The stretching modes of a free PO_4^{3-} anion with T_d symmetry has four internal modes of vibrations [19–22], $\nu_3(PO_4) = 1107$, 1024 cm^{-1} , $\nu_1(PO_4) = 954$, $\nu_4(PO_4) = 576$, and $\nu_2 =$ 482 cm^{-1} are also present in the IR spectra of product. The IR Frequencies of NaMg(H₂O)₂[BP₂O₈]·H₂O and NH₄Mg(H₂O)₂[BP₂O₈]·H₂O were given in Table III. In the IR spectra of NH₄Mg(H₂O)₂[BP₂O₈]·H₂O, the strong band at 1447 cm⁻¹ is due to N-H stretching vibration (Fig. 3b).

The thermal dehydration of this compound is a two step process. The dehydration at lower

TABLE III The IR Frequencies of $NaMg(H_2O)_2[BP_2O_8]\cdot H_2O$ and $NH_4Mg(H_2O)_2[BP_2O_8]\cdot H_2O$

Frequency (cm ⁻¹)	Assignments		
3558	Hydrogen bond between the water molecules		
3354	Hydrogen bond between borate anion and coordinated water		
1202, 1159	VP=O		
1103, 1024	$v_3(BO_4), v_3(PO_4)$		
959	$\nu_1(PO_4)$		
882	$\nu_1(BO_4)$		
850	vas B-O-P		
681	$v_{\rm s}$ B-O-P		
650	δΒΟΡ		
576	$\nu_4(BO_4), \nu_4(PO_4)$		
482	$\nu_2(PO_4)$		

Figure 2 Tetrahedral helices $1/\infty[BP_2O_8^{3-}]$ in the crystal structure of $M^IM^{II}~(H_2O)_2[BP_2O_8]\cdot H_2O~[17].$

 $\textit{Figure 3} \ (a) \ The \ IR \ spectra \ of \ NaMg(H_2O)_2[BP_2O_8] \cdot H_2O \ (b) \ The \ IR \ spectra \ of \ NH_4Mg(H_2O)_2[BP_2O_8] \cdot H_2O.$

Figure 4 (a, b) The SEM photographs of $NaMg(H_2O)_2[BP_2O_8] \cdot H_2O$.

temperature (around 150 °C) converts the formula into $NaMg(H_2O)[BP_2O_8]$ with the release of 2 moles of H₂O. According to Kniep et al. [17], the water of crystallization (spiral structure within the channels of the M¹-borophosphate double helices) and one mole of coordination water (at the M^{ll} centers) are released in a collective process. The M^{ll} centers are then only pentacoordinate. The crystalline dehydration products M¹M¹¹(H₂O)[BP₂O₈] can be described as microporous borophosphates with channel structures. At higher temperatures (at 500 °C), release of the last mole of coordination water leads to X-ray amorphous product. Bands due to both coordinated and hydrated water disappeared and there was a minor change in the structure due to rupture of hydrogen bonds. The interpretation of the IR spectra revealed some broad features between 1200–650 cm^{-1} due to overlapping of P-O and B-O vibrational interactions so characteristic assignments may not very well established as stated by Tarte et al. [23]. Only tentative assignments can be proposed for the lower frequency bands in the $680-480 \text{ cm}^{-1}$ region. These may be assigned to chain vibrations which have a mixed stretching -bending character [24].

3.3. Analysis

The ICP analysis showed that washed product contains 410 ppm (3.72% wt/wt) B, 843 ppm (7.74% wt/wt) Mg and 803.5 ppm (7.4% wt/wt) Na. In addition EDX analysis showed that weight percent of Mg and Na are same. Theoretically, $NaMg(H_2O)_2[BP_2O_8] \cdot H_2O$ contains 3.64% (wt/wt) B, 7.61% (wt/wt) Na and 7.94% (wt/wt) Mg. This shows the ratio of Na : Mg : B is around 1 : 1 : 1.

The SEM photographs of the product are given in Fig. 4a and b which show the hexagonal structure clearly as a single crystals and bulk of single crystals.

4. Conclusion

In this study, $NaMg(H_2O)_2[BP_2O_8]\cdot H_2O$ and $NH_4Mg(H_2O)_2[BP_2O_8]\cdot H_2O$ were obtained and their X-ray powder and indexing data and IR analysis was presented the first time in this reseach. It was also shown that the obtained product is insoluble in H_2O and conc.HNO₃.

Acknowledgement

Authors would like to thank to TÜBITAK Münir Birsel Foundation of Turkey for a scholarship and Anorganische Chemie II, Eduard Zintl Institute Darmstadt, Germany for providing research facilities. METU AFP No:98-06-02-00-06 and Volkswagen Foundation for financing X-ray powder diffractometer would be greatly appreciated.

References

- 1. S. OLIVER, A. KUPERMAN and G. A. OZIN, *Angew. Chem.* **110** (1998) 48.
- 2. G. GÖZEL, Ph.D. Thesis, METU, Ankara, 1993.
- 3. G. GÖZEL, A. BAYKAL, M. KİXZİLYALLİ and R. KNIEP, J. Eur. Cer. Soc. 18 (1998) 2241.
- 4. S. C. SEVOV, Angew. Chem. Int. Ed. Engl. 35(22) (1996) 2630.
- 5. C. H. PARK and K. BLUHM, Zeitschrift für Naturforschung **50b** (1995) 1617.
- 6. C. HAUF, T. FRIEDRICH and R. KNIEP, Z. Kristallogr. 210 (1995) 446.
- 7. C. HAUF, A. YİLMAZ, M. KİZİLYALLİ and R. KNIEP, J. Solid State Chem. 140 (1998) 154.
- 8. P. B. BONTCHEV and S. C. SEVOV, *Inorganic Chemistry* 35 (1996) 6910.
- 9. K. BLUHM and C. H. PARK, Zeitschrift für Naturforschung 52b (1997) 102.
- Y. SHI, J. LIANG, H. ZHANG, J. YANG, W. ZHUANG and G. RAO, Journal of Solid State Chemistry 129 (1997) 45.
- 11. A. BAYKAL, Ph.Thesis, Chemistry Department, Middle East Technical University, Ankara, Turkey, May, 1999.
- 12. R. KNIEP, H. ENGELHARDT and C. HAUF, *Chem. Mat.* **10** (1998) 2930.
- W. H. FLANKE and T. E. WHYTE, "Perspectives in Molecular Sieve Science" (American. Chemical Society., Washington, 1988) p. 10.
- 14. S. ROSEMARIE, "Handbook of Molecular Sieves" (Van Nostrand Reinhold, New York, 1992) p. 25
- 15. J. B. MOFFAT and A. SCHIDTMEYER, *Appl. Catal.* 28 (1986) 161.
- C. J. WARREN, C. R. HAUSHALTER, D. J. ROSE and J. ZUBIETA, Chem. Mater. 9 (1997) 2694.
- 17. R. KNIEP, H. G. WILL, I. BOY and C. RÖHR, Angew. Chem. Int. Ed. Engl. 36(9) (1997) 1013.
- D. PHILIP, G. ARULDHAS, X. MATHEW, V. U. NAYAR, N. BOUDJADA and B. LAMBERTANDRON, Journal of Raman Spectroscopy 22(1) (1991) 45.
- 19. W. E. KLEE and G. ENGEL, J. Inorg. Nucl. Chem. 32 (1970) 1837.
- K. NAKAMOTO, Infrared Spectra of Inorganic and Coordination Compounds (Plenum Press, New York, 1971) p. 45
- 21. S. D. ROSS, Inorganic Infrared and Raman Spectra (McGraw-Hill Press, London, 1972) p. 131.
- 22. A. BAYKAL and M. KİZİLYALLİ, *Turkish Journal of Chemistry* **21**(4) (1997) 394.
- 23. P. TARTE, A. RULMONT, M. LIEGEOIS-DUYCKAERTS, R. CAHAY and J. M. WINAND, Solid State Ionics 42 (1990) 177.
- 24. A. RULMONT and P. TARTE, J. Solid State Chem. 75 (1988) 244.

Received 13 July 1999 and accepted 2 March 2000